
Biochemistry Virtual Lab Software
Team 12

Client: Professor Stone Chen

Faculty Advisor: Professor Simanta Mitra

Team Members:

Peter Bancks

Jacob Christopherson

Enzo Ciccarelli-Asta

Steven Dirth

Romain Ndoutoume

Brody Sunsten

Revised Project Design

Evolution from 491

Project Scope at End of 491
- Web-based software providing virtual Biochemistry lab modules for BBMB 102.

- 3D lab environment featuring interactive lab equipment that is used to complete the same lab

procedures as the physical lab.

- Multiple lab modules allowing for different types of lab procedures to be executed.

- Connectivity with Okta SSO and Canvas assignment submissions to track and grade student

progress.

- Lightweight resource focus to ensure better accessibility from a broad range of web browsers

and computer specifications.

Project Scope Focusing
After reviewing our initial design for the project, we determined that a reduction in the scale of our

scope was necessary to fit the time and resources we had available for this semester. During discussions

with our client, we refocused our efforts on the features they identified as being most important.

- Enhance Virtual Lab Experience: Usability feature requests proposed by our client were added

to our scope, such as alternative camera controls and refactoring the current controls to be

smoother.

- Lab Module 3 Functionality: We reduced our scope from finishing multiple lab modules to

finishing only the largest of the lab modules. This allowed us to focus more on providing a better

user experience within the 3D lab.

- No Canvas Assignment Functionality: Connectivity with assignments in a Canvas class was

removed from the scope. Testing this function would require access at the course administrator

level to a fake canvas course. Between the setup requirements and the payoff of this feature,

we determined that development time would be better utilized by focusing on other features.

Requirements & Standards

Functional Requirements

- 3D environment: User can see and interact with a 3d virtual lab, including objects, tables, PPE,

and a notebook.

- Object Interactions: Objects should act according to the module/experiment script to

demonstrate interactions. Objects that are not related to the current step will not be

interactable.

- Notebook: User should be able to record data necessary for the experiment, graph the data they

find, and read instructions and feedback about the experiment.

- Scripted Events: Upon the completion of specified actions, a specific event or reaction will occur,

and the experiment will either progress or end.

- User Progress: The user should be able to sign in using Okta SSO. If a user completes a lab, their

progress should be saved.

UI Requirements

- Must function on all major web browsers

- UI should direct the user to experiments as intended

- Scripts within modules should be error-free and linked to scripted events

- User can interact with environment smoothly

Standards
- SCRUM – our team roughly followed the SCRUM guidelines to complete the project. We meet

with our client once a week to discuss our project. Additionally, every two weeks we hold a

demonstration of the project and plan our goals for the next two weeks. We use GitLab’s

integrated Kanban board to track our progress.

- Git Feature Branch Workflow – our team follows the Git Feature Branch workflow, creating a

new branch for each feature. These feature branches are then reviewed and merged into the

master branch once completed.

- React Eslint – We use the default eslint configuration for react applications created by create-

react-app. This enforces naming conventions and consistent indentation, among other things,

making it much easier to comprehend the codebase.

Engineering Constraints
- User hardware – The simulation should be able to run smoothly on as many hardware

configurations as possible. As such, our team needed to be aware of the performance of our

software, as it is likely that many users would be running it on a laptop or lower-end PC. To work

around this, we developed 3d models with performance in mind (using lower poly-counts), and

attempted to write efficient, lightweight code.

- Network Capabilities – We were aware of some discrepancies in our network speeds while

working on the project. Because of this, we needed to ensure that our simulation could run as

fast and responsively as possible even on slow network speeds. This was a relatively simple

issue, as the toolset we chose to use (ThreeJS) only requires an initial connection before it can

run a locally cached version in the browser. Therefore, simulation performance is not

bottlenecked by the network as the simulation itself doesn’t require any data transfer to

update.

- Toolset Constraints – Our team also ran into some issues while using the various toolsets we

chose for our project. For example, ThreeJS seemed to separate any 3D models into separate

models by the material that was applied to them. This meant that objects that were clicked and

dragged could split apart. We also ran into some issues with how ThreeJS and react handles the

scroll wheel, as well as various camera, texturing, and CPU usage capabilities. Some of these

issues are still a work in progress.

Security
Our final design has very few security concerns as the website will be static (i.e., the software runs

entirely client side). We do not store any user data, nor is there any application data the user could

access maliciously to cause harm to the system. However, the user could potentially manipulate the

webpage to display an invalid state.

While it is currently hosted on a virtual machine, it would be relatively simple to deploy to any static

web hosting service, and any COTS tool for preventing DDoS (Distributed Denial of Service) attacks could

be used, such as CloudFlare DDoS Protection.

Implementation Details

Yarn
Yarn is a package manager used for development. It allows us to integrate useful libraries into the

project and automatically handle dependencies. It also lets us create optimized builds of the project for

production and publication.

React
React is the framework used to create the site’s UI. It has an expansive library of forms and buttons for

handling input, as well as tools for page navigation.

Three
Three is the open-source library that handles 3D graphical calculations. It allows us to set up a scene that

contains cameras, lighting, and objects. It also allows transformations of those objects, and interaction

with the mouse and keyboard.

React-Three-Fiber
React-Three-Fiber is the framework used to link signals between React and Three. It allows us to have an

interactive laboratory, where objects are moved in a 3D environment, and the UI responds accordingly.

React Testing Library
React Testing Library is a light-weight solution for testing React components. It provides light utility

functions on top of react-dom and react-dom/test-utils. The utilities this library provides facilitate

querying the DOM in the same way the user would.

Testing Process and Results

React Testing Library
We use the react testing library to test the logic of the web application. Because we have been working

on module 3 only, all the tests we wrote are only designed for the Module 3 laboratory. In module 3, we

test the lab's four steps that need to be completed by the students. The testing library helped us test

that the next step is rendered correctly after successfully completing the previous step. With access to

ReactDom, we were able to simulate input events to ensure that the code is working as intended.

Result: Most of the tests we wrote are passing, which means the code is behaving correctly. However,

we have some failed tests that are all related to importing Three js. 3D web applications are very new,

and many testing libraries don't support them now. At this time, we are testing our 3D environment

manually on the browser, and we are using react testing library to test the 2D part of the application.

Manual Testing
Once each team member has completed the implementation of a feature, we manually test the feature

locally on the web browser to ensure correct behavior. In this process, we play the role of an end-user

and are looking for defects that may prevent the user from having a good user experience. If defects are

found, we make sure to fix the issue, and then we test the application again. This process is repeated as

needed until the application works as it is supposed to.

Acceptance Testing
In this testing phase of the software, we get client approval of the work we have done in the past sprint.

A 'pass' in this stage ensures that the customer has accepted the current software and is ready to move

onto the next iteration. For that, we hold demonstrations of our current progress every two weeks to

ensure the project is advancing in a manner acceptable to the client. We also meet with our client

weekly to ensure our specifications are as up-to-date as possible and any deviations from the original

design are approved. Our team carefully reviews any feedback from the client and the faculty advisor,

and we make sure by the next sprint, the issue is resolved.

Related Products and Literature

Related Products
AACT: https://teachchemistry.org/classroom-resources/simulations

Contains multiple 2D chemistry
simulations and videos
explaining and showing other
labs created by the American
Association of Chemistry
Teachers. The units this website
shows are for students in
Elementary School, Middle
School, High School, and a few
for AP classes.

PhET: https://phet.colorado.edu/en/simulations/

This website created by PhET
(Physics Education Technology)
allows the user to download or
run imbedded code to complete
short physics and chemistry
examples and labs. Unlike the
AACT website this emphasizes
University and high school level
resources, and can be filtered
for compatibility, grade level
(elementary-university),
accessibility, and language.

An important thing to note is that there are few to no free interactive 3D simulations. Most of the online

resources are either interactive 2D short simulations or are step by step labs with videos that are not

interactive.

https://teachchemistry.org/classroom-resources/simulations
https://phet.colorado.edu/en/simulations/filter?type=html&sort=alpha&view=grid

2D Version
BioChem 102: https://mitraresearch03.cs.iastate.edu/

There is a sister project where
the lab is done within a two-
dimensional website
environment. Some of the
calculations within our version
of this project take inspiration
from here at the offering of our
client and the developers of this
website.

Literature
“Using online simulations to teach biochemistry laboratory content during COVID‐19”

Biochemistry and Molecular Biology Education, Volume 48 Issue 5

The University of South Australia moved to online learning over March of 2020 and ceased face-to-face

teaching before the students had finished their in-person lab practicals. Luckily for them they had been

developing and using online simulations for the course in question, Biochemistry (a 2nd year

undergraduate course), since 2013. This article goes over some of the simulations, student feedback,

and the practical scores resulting from the online learning. While short, it does reference the papers

from 2012 from when the simulations were being developed and 2020 from a re-look at the findings in

more recent years.

https://mitraresearch03.cs.iastate.edu/

Appendix I – Operation Manual

Install Prerequisites
1. Install Node LTS: https://nodejs.org/en/download/

2. Install the yarn package manager: https://yarnpkg.com/getting-started/install

3. Install git LFS: https://git-lfs.github.com/

Clone the Repository
Note: Please ensure you have installed git LFS prior to cloning the repository! Some files will not

download properly without it.

git clone https://git.ece.iastate.edu/sdmay-21-12/biochemistry-virtual-lab.git

OR

git clone git@git.ece.iastate.edu:sdmay-21-12/biochemistry-virtual-lab.git

Install Dependencies
In the project directory, run

yarn

Note: this will take quite a long time to resolve, download, and install all dependencies for our project

Run the Application in Development Mode
In the project directory, run

yarn start

to start the development server. You can then visit http://localhost in a browser to view the running

application (this should open automatically).

Note: if you would like the development server to run on a different port (e.g. 8080), you can specify the

port number by creating a file named “.env” in the project directory with the contents “PORT=8080”.

More advanced configuration settings are listed here: https://create-react-app.dev/docs/advanced-

configuration/.

Compile the application for deployment to a static web server
In the project directory, run

yarn build

to create a production-ready build of the project. The final website will be in the build directory, which

you can then serve with any static webserver. We provide a quick and easy example utilizing serve

(https://github.com/vercel/serve#readme):

yarn global add serve

serve build

https://nodejs.org/en/download/
https://yarnpkg.com/getting-started/install
https://git-lfs.github.com/
https://git.ece.iastate.edu/sdmay-21-12/biochemistry-virtual-lab.git
http://localhost/
https://create-react-app.dev/docs/advanced-configuration/
https://create-react-app.dev/docs/advanced-configuration/
https://github.com/vercel/serve#readme

Appendix II: Alternative Designs
We briefly considered using a different UI Library, React Material UI – used by the 2d lab - but decided

to use PrimeReact due to members experience with PrimeReact.

We considered a desktop application but decided against it due to the difficulty of supporting multiple

platforms.

We attempted to host the website on Microsoft Azure, but due to billing requirements we opted to

utilize a VM on the Iowa State Servers instead. This added an extra step to accessing the virtual lab,

requiring users to use a VPN to connect to Iowa State’s network if they were working remotely.

Citations

Costabile, M. Using online simulations to teach biochemistry laboratory content during COVID‐19.

Biochem Mol Biol Educ. 2020; 48: 509– 510. https://doi.org/10.1002/bmb.21427

“Create React App.” Create React App · Set up a Modern Web App by Running One Command., create-

react-app.dev/.

“Git Feature Branch Workflow: Atlassian Git Tutorial.” Atlassian,

www.atlassian.com/git/tutorials/comparing-workflows/feature-branch-workflow.

“SCRUM.” Scrum, www.scrum.org/.

https://doi.org/10.1002/bmb.21427
http://www.atlassian.com/git/tutorials/comparing-workflows/feature-branch-workflow

